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Abstract. In this paper we obtain a Functional Central Limit
Theorem for the empirical process of a stationary sequence under
a new weak dependence condition introduced by Doukhan and Louhi-
chi [5]. This result improves on the Empirical Functional Central
Limit Theorem in Doukhan and Louhichi [5]. Our proof relies on new
moment inequalities and on a Central Limit Theorem. Techniques of
proofs come from Louhichi [12] and Rio [16], respectively. We also
deduce a rate of convergence in a Marcinkiewicz—Zygmund Strong
Law. '
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1. INTRODUCTION

In this paper we essentially give a Functional Central Limit Theorem (The-
orem 1) for the empirical process of stationary weakly dependent sequences,

which improves on results in Doukhan and Louhichi [5]. Our dependence -

frame is described in Section 1.1. The main steps to obtain our theorem are
a new moment inequality (Lemma 3) and a Central Limit Theorem (CLT)
(Theorem 2).

Moment inequalities under independence have already been studied. We
recall here the Rosenthal inequality

(1) : E |Sn|r < Cr {(Var Sn)rlz +nE |X1|'} »

where X = (X, ..., X,) is a centered vector of independent and identically dis-
tributed (i.i.d.) real-valued random variables with finite variance, S, = X;+...+X,,
So =0, and re]2, + oo[. Doukhan and Louhichi [5] obtain Rosenthal inequal-
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ities under weak dependence, but exponents are restricted to be even integers.
Loubhichi [12] gets moment inequalities of order re ]2, + oo[ for a class of se-
quences satisfying the property: the non-correlation yields the independence. This
property is called the (AG)-property and is satisfied by associated and Gaussian
processes. In this paper, we extend Louhichi’s moment inequalities to weakly

.dependent sequences (Lemma 3 stated in Section 3). Weak dependence used

here is precised by Definition 1 in Section 1.1. Examples of such sequences are
described in Section 1.2. The tightness of the empirical process is deduced from
these moment inequalities. Another application of our moment inequalities is
a Marcinkiewicz—Zygmund Strong Law (MZSL) for partial sums of bounded
dependent random variables (Corollary 1). )

We prove then a Central Limit Theorem from which we deduce the fi-di
convergence. Its proof relies on a variation on the Lindeberg—Rio method (Rio
[16]) and not on Bernstein’s blocks (used e.g. by Doukhan and Louhichi [5] to
prove the fi-di convergence). _

We relax assumptions of previous authors for both tightness and fi-di
convergence.

The paper is organized as follows. Our main result is stated in Section 2.
In Section 3 we state our new moment inequalities. We also write a corollary
concerning rate of convergence for an MZSL for partial sums in our depen-
dence frame. Finally, Sections 4, 5 and 6 are devoted to the proofs of the main
result, of the corollary concerning an MZSL and of our moment inequalities,
respectively. We defer the proof of the Central Limit Theorem and of some
technical lemmas to Appendix A and Appendix B, respectively.

1.1. Weak dependence. Our dependence frame is a variation on the one in
Doukhan and Louhichi [5]. We work here under a causality assumption which
is fundamental in the proof of our moment inequalities (see Section 6). More
precisely, E being some Euclidean space R? endowed with its Euclidean norm
||ll, we shall consider a sequence of E-valued random variables (X,).cn-
We define [ as the set of measurable and bounded numerical functions on
some space R™, meN*, and its norm is classically written ||-[|,. Moreover,
let ue N* be a positive integer. We endow the set F = E* with the norm
115 -« s X)llF = lIx3l +. ..+ [[x.]l. Let now h: F = E* — R be a numerical func-
tion on F, and let us set

o h)—hO)
Lip () = sup = e

for the Lipschitz modulus of h. Define

P = G {he L (E*, R); Lip(h) < oo}.
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DerFNtTION 1. The sequence (X,),.n is s-weakly dependent (SWD) if for some
sequence @ = (0,),.y decreasing to zero at infinity, for any u-tuple (iy, ..., i,),
ueN*, and for any v-tuple (ji,...,Jj,), veN¥, with i} <...<i, <i,+r<
j1<...<j,, and hel®, ke %, :

2 |Cov(h(Xy,, ..., X;), k(Xj,s ..., X3))

< vllhll., Lip(%)0,

1.2. Examples. Before stating our results, we give examples of (SWD) se-
quences in this section.

DerINITION 2. Let (1,),.z be a stationary sequence of real-valued random
variables and F be a measurable function defined on RN. The stationary sequence
(X nez defined by X, = F(4,,, -1, fn—2, ...) 18 called a causal Bernoulli shift.

We denote by (6,),ey any non-negative and non-increasing sequence such that

E|\F(fo>#%-1,%-25-.)—F (o, -..,1-,,0,0,..)] < 8,.

Causal shifts with i.i.d. innovations ()2 satisfy (2) with 6, (see Doukhan
and Louhichi [5]).

Examples of such situations are the following:

e The real-valued functional autoregressive model:

If T: R — R is such that |T (u)— T (W)} < clu—u'| for some 0 <c <1 and
for all u, W' eR, and if (y,),.z is some iid. innovation process satisfying
El”Ol < 00, (XII)IIEN defined by

©) Xo=T(Xu-1)+1n

is (SWD) with 6, = Cc" for some constant C > 0.

e The non-mixing stationary Markov chain with iid. Bernoulli innova-
tions (P(o=0)=Pno=1)=1/2) X,=X,-1+n)/2 is (SWD) with
0, = 0(27"); its marginal distribution is uniform on [0, 1].

e Chaotic expansion associated with the discrete chaos generated by the

sequence (f)z: . ©
In a condensed formulation we write F(x)= zk= o Fu(x), xeRN, for

e8] [+0] a0
. .Fk(x)z Z Z Z afr!:),....jkxﬁx.iz"‘xik’ k>1,
J1=072=0  jx=0
where Fi(x) denotes the k-th order chaos contribution and Fg(x) = af is
only a centering constant. In short, we write, in the vectorial notation, Fi(x) =
2 eni @39 x;. Processes associated with a finite number of chaos (ie. Fi =0 if
k > k, for some ko € N) are also called Volterra processes. A simple and general
condition for L'-convergence of this expansion, still written in a condensed
notation, is

2 {2 1aPIElnol} < co.

k=0 jeN*
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This condition allows us to define the distribution of such shift processes.
A suitable bound for 6, is then

[+ o]

6=%{ T |aPEmRl} <o

k=0 {jeN*|ljllw>r}

— If Elgol =0 and

_ )
Fe)= ), afd pxiXj,.x,, k=1,
0<j1<...<jk

1/2
then 0, = (ZD<11< « <Jies Jk>r( (k) fk)z (En%)k) *
— Linear processes X, = Z:’:O a Y, — which include ARMA models are

those with F, (x) = 0 for all k > 1. A first choice is 6, = E |no] )., . & for the
linear process with i.i.d. innovations such that E |n| < co. For centered and I
innovations, another choice is thus

0, = /E|T'IO|2 Z |ak|2-
k>r

— The simple bilinear process with the recurrence equation X, = aX,_;
+bX;—1 -1+ 1.
Such processes are associated with the chaotic representation in

[+ 4] j—1
Fx)= Y x;[](@+bxy), xeR®
j=1 s=0
If ¢ = Ela+b&| < 1, then 6, = (¢"(r + 1))/(c—1) has a geometric decay rate.

— ARCH(o0): The recurrence equation X, = (a+z,;'°=1 b; X,_;)n, has the
stationary solution

X‘ =a Z Z b_il“'bjzntnt—jx"'nt—jl—...—-jp
1=0 j1..1=1
where a >0, b; >0 for all j, }.." . b; < 00, and (f)een is a sequence of iid.

non-negative random variables ('see e.g. Giraitis et al. [8]). Then we can prove
that the process (X,)z is (SWD); see Doukhan and Louhichi [6].

2. THE EMPIRICAL FUNCTIONAL CENTRAL LIMIT THEOREM

Let (X,).n denote a stationary sequence of real-valued random variables.
In this section we investigate some properties of the empirical process con-
structed from the stationary sequence (X,)nen-

We get a Functional Limit Theorem for the empirical process under the
(SWD) weak dependence condition. We consider a stationary sequence (X ,),n
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of random variables with common distribution function F, For te R, we con-
sider the following processes:

n—1

Fu)i=7 % lne and  Uy0):=/n(Fa(—F ()

. k=
We have the following result:

THEOREM 1. Let (X,),en be a stationary sequence of real-valued random
variables with common repartition function F supposed to be Lipschitz. Assume
that (X ,) satisfies the (SWD) dependence condition with 0, = O((r +1)"2-2Y 27
for some v > 0. Then the sequence of processes {U,(t); te R}, converges in
distribution in the Skorohod space 9 (R) to the centered Gaussian process indexed
by R with covariance defined by

+w
F(SS t) = Z COV (1X0555 1X|k|$t)'
k=—o
In fact, Theorem 1 can be decomposed into two parts: the tightness and
the fi-di convergence.

LemMA 1 (Tightness). Let (X,),.n be a stationary sequence of real-valued
random variables with common distribution function F supposed to be Lipschitz.
We assume that (X ).n fulfills the (SWD) dependence condition with

0, = @((r;l- 1)'2'2*/5'“) for some v>0. Then the sequence of processes
{U,(t); teR},>o is tight in the Skorohod space % (R).

Lemma 1 is proved in Section 4. It clearly improves on Doukhan and
Louhichi [5] who assume 6, = O(r~¢*"), v > 0. Indeed, in order to obtain
tightness, those authors calculate the moment of order 4 of the partial sums.

Here we have just to calculate some moment of order 2+\/§ as shown in the
proof of Lemma 1. Lemma 3 in the next section allows us indeed to calculate
the moment of order r which is not necessarily an integer.

The fi-di convergence is deduced from the following

TueoreM 2 (Central Limit Theorem). Let (X,).n be a stationary sequence
of centered (SWD) weakly dependent random variables with 6, = O ((r+1)~°) for
some a>3/2. We assume that (X,),n is uniformly bounded. If S,= X,
+...+X,_1, we assume that

Var(S,) 2
il el N

c“>0 as n— oo.
n

Then

n—1
Y X, ZNH0,6%) asn-oo.

i=0

Sl
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The method of proving Theorem 2 is a variation in the Lindeberg—Rio
method (Rio [16]). From Theorem 2 we deduce the following lemma:

Lemma 2 (Fi-di convergence). Let (X,),.n be a stationary sequence of real-
-valued random variables with common distribution function F supposed to be
Lipschitz. Assume that (X,).n Satisfies the (SWD) dependence condition with
a sequence (0),en 1= ((r+1)““),eN. Let a > 3. Then the finite-dimensional mar-
ginals of the process {U,(t); t€ R},»q converge in distribution to the finite-dimen-
sional marginals of the centered Gaussian process indexed by R with covariance
defined by e

+ o

F(S, t) = Z COV (]'XQS.SS 1X|k|$1)'
k=—w
The proofs of Theorem 2 and Lemma 2 are defered to Appendix A. The
condition 6, = O((r+1)~2?) for some é > 0 in Lemma 2 improves the condition
6, = O(r~*) obtained by Doukhan and Louhichi [5] for fi-di convergence.
Now both the tightness result and the fi-di convergence result yield Theo-
rem 1.

3. MOMENT INEQUALITIES

In the statements of the main results in Section 2, we consider an (SWD)
sequence (X,),.~. To prove the tightness in Lemma 1, we need moment in-
equalities for the partial sums of a sequence (¥,) = (¢ (X,)). We prove in Section 4
that (Y,),en is also s-weakly dependent. Therefore the goal of the following
lemma is to give moment inequalities for (SWD) sequences. Doukhan and
Louhichi [5] prove moment inequalities for weakly dependent sequences. But
the order of-these inequalities is an integer not less than 2. Recently, Louhichi
[12] has proved moment inequalities of order re]2, + oo[ but for sequences
satisfying the (AG)-property. The following variation on Louhichi’s lemma
[12] entails moment bounds of order re]2, + o[ for (SWD)-sequences:

LEMMA 3. Let r be a fixed real number greater than 2. Let (X,) be a station-
ary sequence of centered and (SWD) random variables. Suppose moreover that
this sequence is bounded by 1. Let S,:=X,+X,+...+X, for n>1 and
So = X = 0. Then there exists a positive constant C, depending only or r such
that

) E|S|" < G [s,+M,,],
where M,,,, = nz::; (i+1yY~26;, and s2:=M,, = nz:ol 6;.

We prove Lemma 3 in Section 6.
These moment inequalities also allow us to study the rate of convergence

. for a Marcinkiewicz—-Zygmund Strong Law for partial sums of bounded depen-
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dent random variables. Such results appear for example in Lai [9] and in
Berbee [1] for the mixing case and in Louhichi [10] for the associated case.
Let us first introduce the notion of r-quick convergence as in Lai [9].

DErFINITION 3. A sequence (Z,),.x of random variables converges to 0
r-quickly (r > 0) if

E(N,) <o for all ¢>0,
where N,:=sup{n>1: |Z,| > ¢}.

Note that the convergence Z, — 0 r-quickly for some r > 0 iﬁfplies Z,—-0
a.s.

The following corollary is a convergence theorem for s-wedakly dependent
variables.

COROLLARY 1. Let (X,),> 1 be a stationary sequence of centered and (SWD)
random variables. Let r be a fixed real number greater than 2. Suppose moreover
that this sequence is bounded by some positive constant M. Assume that the
coefficient of (SWD) satisfies 8, = O((g+1)"") with D> r—1. Then:

o for all <a<1, for all k<(a—3%)r—1, and for all ¢ >0, we have:

5 Y, n“P(max|S;| > en®) < oo;

nz1 I=n

o forall 1 > a >4, for all 1 < pu < (x—3)r+1, we have the following four
assertions:

LY, ., 7" 2 P(max;<,|S)| > en%) < oo for all ¢>0,

2. E{5up,s0 (S, —en)}®*~ V% < o0 for all &> 0,

3. ), 5 WP 2 P(supszaj %S > &) < o0 for all >0,

4. n7*8, -0 (pa—1)-quickly.

The proof of Corollary 1 is given in Section 5.

4. PROOF OF THEOREM 1

This section is devoted to the proof of the main result (Theorem 1) stated
in Section 2. We prove the Functional Limit Theorem (Theorem 1) in 2 steps:
the tightness and the fi-di convergence.

Proof of Lemma 1. In the following, C will denote some arbitrary
constant which may vary from line to line. Let s < ¢ be two real numbers. We
want to apply moment inequalities of Lemma 3 to the sequence

(1s<x,,$-(F(t)—F(s))) |

2
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So we have to prove that this sequence, denoted by (Y,)..y, satisfies an
(SWD) dependence condition. For this we have to bound

Chup:=Cov(h(Y,, ..., ¥.), k(Y, ..., ¥})

for all i; <...<i,<i,+r<j; <...<j, and for all heL”, ke Z. Let £>0
such that s+¢& < t—e. Let us write Y, = ¢ (X,). We want to smooth the func-
tion ¢ which is not Lipschitz. For this we consider the following Lipschitz
function ¢® smoothing ¢:

® ¢, is equal to @ on ]—o0,s—&g]uls+s, t—e]ujt+e, +oof;

e for s—e<x<s+s,

-F@t)—F
Pe(x) = 1(x —3sx2+3 (s> — &%) x—s° + 3562 — 26%) — M,
o for t—e<x<t+e,
—! | t)—F
e(x) = 25 (x> —3tx* +3 (¢ —Sz)x—t3+3t82—2s3)_w.

We then have [|¢%|, < [|¢llo <3 and Lip(¢®) < 3/(8¢). Consequently, we
obtain

IChuol < [COV(R(Y, ..y Yo k(@ (X)), o 0(X1))—k(0°(X), ... 0° (X))
+|Cov (h(Y,, ... Ki), k(0 (X, ... 9° (X))
< 2||hl| Lip (k) i Elo (X;)— ¢° (X ;)| + Ikl Lip (k) Lip (9%) 6, v

i=1
< 2|lHllo Lip (}) 02|l P (Xo €] s—e, s+8] 0 Jt—e, t+])
+I1hl.0 Lip (k) Lip (¢°) 6,0
< I1Hll Lip (k) (8¢ Lip (F)+(36,)/8¢).

In the following, C denotes some positive constant which may vary from
line to line. So we have

|Chusl < Cllhll, Lip (k)v (e +6,/¢).
Then if /0, < (t—s)/2, we take & = \/0_,, and get

6) |Chuol < ClIhl, Lip (k) 2, /6,.

Moreover, |Cy, | = |Cov(R(Y,, ..., Vi), k(Yj,, ..., Y;,)—k(Y],, ..., Y,))|, where
we consider Y, = ¢ (X}) with (X}),en 1ndependent of (X,)sen such that for all

neN, X, ~ X,. Hence

(Chuol < 2[1Bll LD E Y 10X ;) — @ (X3 < 21hll oo Lip (6) 04 2E 1, <ol

i=1
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and

) (Chinal < C bl Lip (6 (F ()~ F (5).

Using (7) and the property that F is Lipschitz, we deduce that
|Chuol < Cllhllo Lip (R)v [t —s].

Hence, if \/9_, = (t—s)/2, we obtain
|Chaol < Cllhll Lip (k) 0/6;.

Therefore, for all numbers s < ¢t the inequality (6) holds. From the inequalities
(6) and (7) we infer that

@®) IChausl < Cllhll, Lip ®) o (F©)—F (5) A /8,).

S0 (Yuen is (SWD) with 6, < C((F(£)—F (s)) A ﬂ) We prove the tightness
applying Lemma 3 to (Y,).ey. In the following, C, denotes some arbitrary
constant which depends only on r and which may vary from line to line. Notice
that

7 Z =U,()—U, ().
If we write 0, =r"% a>0, we get

Jzﬁ"fﬁ <C, {(Z k™ A (F@O—F )"}

r

+C,{n(2""/2i (k+1y~2[k~% A (F@®)—F(s)]}-

Hence if a> 2 and if a > 2(r—1), then
2 n—1

Y %
Bl s,
Now, if we choose r = 2+ﬁ as F is continuous, it follows frdin Theorem 2.1

in Shao and Yu [17] that the sequence {U,(t), te R} is tight in the Skorohod

space Z (R) as soon as a > 2+2\/§. The choice r = 2+ﬁ minimizes the
condition on the dependence coefficient a. This completes the proof of the
tightness. =

r

£C, {(F (O)—F (S))r(a ~2)/(2a) 4 p(2-1)2 ( F O—F (S))(z +a— 2r)/a} ]

To conclude the proof of Theorem 1 we have to prove Lemma 2 of fi-di
convergence. For this purpose we use a Central Limit Theorem (Theorem 2)
whose proof is given in Appendix A.

Now Lemmas 1 and 2 together yield both the tightness and the fi-di

convergence as soon as g > 2+2ﬁ. This completes the proof of Theorem 1.
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5. PROOF OF COROLLARY 1

In this section we prove Corollary 1 stated in Section 3. Assume that
C, still denotes some constant, depending only on r, which may vary from line
to line.

We apply the moment inequalities to the partial sums of (X,/M). As
D>r—1 and r > 2, we get for all n large enough:
Sn

M

r

E

+ o
<C (Y 6)".
i=0

We then apply maximal inequalities in Moricz et al. [13] and the Bienaymeé-
Tchebysheff inequality to obtain, for £ <a <1, k <(x—%)r—1 and for all
e>0, '

9) ~P(max |S;] = en®) < C,. n(r/2)—ar,
1<k<

LAY

where C,, depends only on r and e.

From (9) we deduce (5) in Corollary 1. Now, Lemma 2 in Chow and Lai
[2] together with (5) yield the assertions 1-4 of Corollary 1.

The next section is devoted to the proof of moment inequalities stated in
Lemma 3 of Section 3.

6. PROOF OF LEMMA 3

The proof is a variation on Louhichi’s method [12] under our dependence
frame. Let p > 2 be a fixed integer. We define the function g,: R* x R —» R* as
in Louhichi [12]:

(10) gp(t, x): [x"“ 10<x<z+(xp+1“(x“t)p+1) 1t<x]

1
T+
for any x > 0 and g,(t, x) = g,(t, —x). Then we decompose the proof into
several tool steps. :

6.1. Step 1: Main terms. Let p > 2 be a fixed integer and %, be the class
of real-valued, p times continuously differentiable functions f such that
fO)=...=f®0)=0. Let #,(b,, b,+1) be the subclass of €, such that
If Pl < bpand || f®* V||, < byyy, where ||f V|, = Supyer|f @ (x)] and f© de-
notes the differential of order i of the function f. We recall a result of Louhichi
[12], which is a generalization of the equation (4.3) in Rio [15].

LeEMMA 4. Let p be a fixed integer, p = 2. Let ¢,€P,, where

@,:={¢: R* >R*; ¢ convex, $(0) = ¢'(0) = ... = ¢ (0) =0,
" @™ non-decreasing, concave}.
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Suppose that lim, ., , ¢¥*V (x) = 0. Then

+

¢p(x) = I gp(t9 x)vp(dt):

0
where v, is the Stielties measure of — PV defined by v,(dt) = —d¢@* V(7).
Lemma 4 together with Fubini’s theorem yields

+ o

(11) E¢,(S.) = (I) Eg,(t, S,)v,(dt). o

Consequently, we deduce the estimation of E¢,(|S,|) from that of Eg,(t, S,).
Hence the goal of this step is to bound Ef (S,) for a “good” set of real-valued
functions f containing the functions x — g,(t, x), t = 0.

We notice that the function x — g, (t, x) as defined by (10) belongs to the
set %, (bp, bps+q) with b, =t and b,,, = 1. Hence we give in this step an es-
timation of Ef(S,) for fe%,(b,, b,+1). Let us first exhibit the main terms
which appear in the proof:

Ep—l,k = ) Z IEXk—l'nXk—i1"'Xk_—ip—1l;

E, ,x(4f)= sup Z . IEXk—ioXk—h“-Xk—ip-zAp—Z,k(f)ls

Lu< . . N
Osuslo=:ip<i;€...€ip-2<k—1

where
Ap2i(F)=Ap—2,(fi ) = [f (Sk—ip_ -1 +uXp—i, ) —f (Si—i,_,-1)]
= uXk_,-p_zif’(Sk_,-P_z_l +uvXy—;, ,)dv;
and

E, ,x()= E |EX gt X—iy oo Ximiyop f Sk—ip_o—1)l-

0=:ip<i1 €...Sip-2%<k—1

Then we denote by 4, , (respectively, by A,,(f), A,.(4f)) the sum Y _ E,,

(respectively, Z:=1El’vk N, Z:=1Ep',c(A .

For a real-valued function f that belongs to the set #,(b,, b,.,), the
quantity |E(f(S,))| is evaluated by means of the main terms E,_, ;(f®~") and
E,_;,(4f®" V) as shown in the following lemma.

LEMMA 5. Let p be a fixed integer, p = 2. Let (X,) be a sequence of (SWD)
random variables, centered and bounded by 1. Then there exists a positive con-
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stant C,, depending only on p, such that for any feF,(b,, byiy)

n—1

|E (f(Sn))I ‘g Cp {sg(bp A bp+1 Sn)+(bp A bp+1) .ZO (n_l) 01‘

+ 3 Byaa7 0+ 3 Epeaslafe ).

The covariance terms in Louhichi [12] are replaced here by bounds de-
pending on (6,),50- -
Lemma 5 is proved in Appendix B.

6.2. Step 2: Evaluation of the main terms E,_,,(f) and E,_, ;(4f). The
purpose of the second step is to evaluate the main terms E,_,,(f) and
E,_,4(4f) of Lemma 5. We need first the following preparatory lemmas.

6.2.1. Preparatory lemmas. Let us recall the following notation:

n—1 n—1
M,.,,l =n Z (i+1)r_20i, S,% = Mz,,, =n Z 01'.
i=0 i=0

LeMMA 6 (Doukhan and Louhichi [5]). Let (X,) be a centered sequence of
(SWD) random variables. Suppose that (X,) is uniformly bounded by 1. Then, for
any integer p > 2, there exists a positive constant C, such that

n
X By < Gy {58+ My,

Lemma 6 is established by Doukhan and Louhichi [5] in order to give
moment inequalities with integer order p.

The following lemma will often be used in the sequel and is proved in
Appendix B.

Lemma 7 (Holder’s inequalities). For all p >4 and me{3, ..., p—1}, we
have

12 - - MuyoM,_pn < s,%”/(”_z)M;‘f,,_‘”/("_z) < {2+ M,,}.
Define
n—1
Mm,n(bla bz) =n (b1 A b2 (l+ 1))(l+1)m_20,
i=0
Then
(13) Sg_m(bl A b2 Sn)Mm,n < Sg(bl A b2 sn)+Mp,n(b15 b2)
and also

(14) srl:_mMm,n(bla b2) < S#(bl A b2 sn)+Mp,n(b1: b2)
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6.2.2. The basic lemma. The following lemma is the basic technical lemma
of this section.

LeMMA 8. Let f be a real-valued function of the set #, (b, b,). Let (X,,) be
a centered sequence of (SWD) random variables. Suppose that (X,) is uniformly
bounded by 1. Then, for any integer p > 2, there exists a positive constant
C, depending only on p, such that

(19 3 Epsadf)+ 3 Eyenal)

p—2
S Cp{s2(bs Abzs)+ Y, My, M, (b, ba)+ M, (b, bz)}.

m=2

The right-hand side term of (15) is similar to the one obtained in Lemma 5
by Louhichi [12]. However, details of the proof are different in view of the kind
of the dependence assumed.

Proof of Lemma 8. Using induction on p = 2, we will prove that each
of the terms Y, _ E, ,4(4f) and Y, _ E, ,,(f) is bounded by the right-
-hand side of (15).

For p = 2, we refer to Louhichi [10]. We can also deduce the calculations
for the case p =2 from the general case that we state just below.

Suppose now that (15) holds for the order p— 1. We will prove it for p. Our
purpose is then to evaluate the following sums:

(16) Z Z |EXk—ioXk—i1"‘Xk—ip—2 f(Sk—iP—z—l)I
k=1 0=:ip<i; £...€ip-25k—1

and

17 Z 2 IEXk—ioXk-il---Xk—ip_zAp—Z,kfl'

k=1 O0=tig€i1€...€ip-2¥k—1

We argue as Doukhan and Portal [7]: Let 0 =:ip <i; <... <i,—; <k=-1
be a fixed sequence of increasing integers, let m be the smallest integer for which

Pwi=ipt1—im = 1<m<ax 2(iq—‘iq_l).
sqsp—
. m . e e
Finally, let Zi) =)”.0 SAPNPTER denote the sums over the subdivisions

iy <...< ip-p < k—1 for which the big lag max, <<, (i;—i,- 1) is reached at
the index m. (
m),rm T
We also set ZO=:io Si1Son Sipoa Sk 1 for sums over the subd.1v1s1ons
iy <...< iy, such that the big lag i,  —i, = max; <,<p-2 ({;—iz-1) is equal
to r,.
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Hence, if B denotes a subset of N?~2 and g is a positive function on N?~2,
then

(18) . Z g(i1, ey ip—Z)

O=:ip<i1 €. \'-P 2<k—1)eB
p—3 k-1 (m),rm

<Yy ) Y gliss .o ip_2).

m=0ry,=0(0=ip<i1<...Sip-25k—1)cB
We mean by the notation (0=:ip<i;<...<ip-, gk—l)eB that
(1,...,ip-2)eB and that 0 =:ip <i; <...<i,_, <k-1.

Study of the bound of (16). We note the following decomposition:
for g continuous and differentiable, if g(0) = 0, then

19) 4(5,) = 21 [9(5)—g (Se-1)] = 2 Xog' (Sho 1+ X3,

where for all 1<k<n, 0 <y <1.

Now we use calculations on the function f* instead of f. The function f”
appears thanks to Taylor’s formula (cf. the equality (19)). Let us go into further
details. .

First, we write

Fr-ipa—1) =L Sr-ip_s-1)—F Si=i, s—rm—1)1+f Sk=i,_5-rm-1)-
The last decomposition yields
Q0)  |E(X Xty Kimiyy f (Siciya))
< B XKimy o Koty [ Stmtyam1) = Gamiyamr=2)])
+ |E(Xka—i1---Xk—ip_zf(sk—iy-z—l))|
=:J1G1, oeor ip-2)+ T2 (s oees ip2).
Evaluation of ). J2(igs ...r ip—2). The relation E(XY)=

i1 <...€ip-2

Cov(X, Y)+E(X)E(Y) can be written as
@1)  E(XiXews, Xioiyy f Sityozmr—1)
= COV(Xka—ip--Xk—ip—z’ f(sk—ip—z—rm—l))
+E X Xy—iy .o Xi—ip ) E(f (Sk—ip—y—rm—1))-

The function f belongs to the set & (by, b,). Hence, using Taylor’s formula
(recall that f(0) = f'(0) = 0), we obtain

IfON < bylxl,  1f ()l < by x?/2,
which yields
(22) | (f(Sk ip-2— r,,.—1))| Su(by A by sy).
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We deduce from the last bound and Lemmas 6 and 7 that

@3) ¥ ) B (Xi Xty Xty - ) E(f S=ip-2-rn=1))|

k=101 €...€ip-25k—1
< Cp-y (Mp—l.n+Sg_1) Sa(by A bysy) < Cp(Mp.n(blo by)+5sE(by A b, Sn))-
In order to evaluate the first term of the right-hand side of (21), we use the
following lemma whose proof is defered to Appendix B.

LeMMA 9. Let (X,) be a centered sequence of (SWD) random variables.
Suppose that (X,) is uniformly bounded by 1. Then, for any integer p > 2, there
exists a positive constant C, such that for any fe%(b;, by):

n p—2 k—1 (m),rm

Y ) ) y sup |Cov(Xy... Xy—i
k=1m=0rm=0 0=tip<is <...<ip- 4e[0:1]
Xk—i,,.ﬂ---Xk—ip_lf'(sk—ip_l_l+uXk_iP_1))|
p-2 :
< Cp{Mp,n(bh b2)+ Z Mm,nMp—m,n(blzv b2)+Sg(b1 A b2 Sn)}'
m=2

Now, the first equé.lity in (19) and Taylor’s formula yield

(m),rm
4 Z lCOV(Xka—h"‘Xk—ip_za f(Sk—ip_z—rm—l))|
0<€i1 ... Sip-2%¥k—1
(m),rm k—1
< ) Y sup |Cov(Xy... Xy,

() ip-1=ip-z2+rm+1uel0:1]
Xi—iyy ' S=ip_y-1 +uXk—ip_1))|:
where (i) means 0.<i; <... <ip_,.

m), k—1
Remark 4. The two sums Z;l:’; <iv_a i =i _a4rnsy ar€ taken over
Si1S . Sip-2 buip-1=ip-2+rm

the subdivisions 0 <i; <... <i,_; <k—1 such that

rm:=im+1_im = max (iq_iq—l)
1sg<p-2
and that i, —i,_, > r,+1. Hence i,_; —i,_, is the big lag of the subdivision
0<i; €...<i,—; < k—1. Consequently, if we sum some positive quantities,
we obtain

p—3 k-1 (m),rm k—1 p—2 k-1 (m)rm

MDD ID) Y <X X )3

Mm=0 rm=0 0<i1$...<ip-3 Ip-1=ip-2+rm+l mM=0r,=0 0<i1<...Sip-2Sip-1
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We take the sums over m: 0 < m< p—3,rp: 0<r, <k—1, and over k:
1<k<nin (24), and we use Remark 4 and Lemma 9 to obtain

n p—3 k—1 (m),rm

(25) Z Z Z Z ICOV(Xkaﬁil---XkAi,wz’f(Sk—ip-z—rm—l))l

k=1m=0rn=0 0<i;1<...Sip-2€k—1

r—2
S CF {Mp,"(bi, b2)+ Z Mm,n‘Mp*m,n (bl, b2)+S£(b1 A b2 S")}.

m=2
We deduce from (21), (23) and (25) that .
n p—3 k-1 (m),rm

(26) Z Z Z Z IJZ (ila L) ip—z)l

k=1 m=0rn=00<i)<...Sip-2<k~-1

p—2
< Cp{Mp.n(bI: b2)+ Z Mm,nMp—m,n(bls b2)+s£(bl A b2sn)}'
m=2

Evaluation of ), . . . J (..., i,-2). Let us note that
[EXY| < |Cov(X, Y)|+|EX||EY].
Using the decomposition (19) and Remark 4, we then deduce

(m),;rm

(27) Z |E(Xka—i1"'Xk—ip—2[f(Sk—ip—z—1)_f(Sk-ip—z—rm—1)])|
0<iy<...Sip-25k—1
(m),rm
< Y |Cov (X;... Xs—i,
0<i1<...€ip-25k—1

Ximimrs - Ximigos [ Skmipa=1) = f Sty = rn—1)])|

(m),rm

+ ) |E(Xk-'-Xk—im)E(Xk—im+1"'Xk—ip-z[f(Sk—ip—z—l)
i1 € Sip-2
_f(Sk_ip—Z_rm_l)])|

(m),rm
-S_ Z sup |COV(Xk "'Xk—im: Xk—im+1"'Xk—ip—1 fl(Sk—ip_1—1+uXk—ip—1))|

i15...Sip -1 uel0,1]

(m),rm

+ Z [IE(Xka_il.'.Xk_im)E(Xk—im+l."Xk—'ip~2f(Sk_ip—2_1))|

i1€...Sip-2

+|E(Xk---Xk—im)COV(Xk—i,,.+1---Xk—ip_zs f(Sk—ip—z—rm—l))I
+|E(Xk---Xk—i,,.)E(Xk—im+1---Xk-ip-z)E(f(Sk—iF_z—rm—l))l]'

To give a bound for the sums over k, m and r,, of the right-hand side of (27), we
use Lemma 9 in order to evaluate the first term, and for other terms we use
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Lemmas 6 and 7 and, respectively, the inductive assumption, the inequality (25)
and the inequality (22). We thus obtain
n p-3 k-1 (m),rm

(28) Z Z Z Z IJl (ila EERF ip—z)l

k=1m=0rm=00<i;<..Sip-2%k—1

p—2
< Cp{ Z Mm,nMp—m.n(bla b2)+Mp,n(b1, b2)+srl:(b1 A bzsn)}-

m=2

From the inequalities (20), (26), and (28) we get -

Z Z EX; Xp—iy oo Ximiy o f Sk-ip_3~1)l

k=10<i)<..€ip-25k—1
p—2

< Cp {sg(bl A b2 Sn)+ Z Mm,nMp—m,n(bla b2)+Mp.n(b1= bz)}
m=2

The last inequality proves that the quantity in (16) is bounded by the right-
-hand side of (15).

Study of the bound of (17). Using again the fact that |[E(XY)| <
|Cov(X, Y)|+|EX||EY]|, a Taylor expansion, the inductive assumption, and
Lemma 9 we obtain

sup Z |EXka—i1---Xk—i,,_zAp—z,kf|
k=10Sus1 <. <ip-2%k—1
p—2
< Cp {s£(b1 A b2 Sn)+ Z Mm.nMp—m,n(bh b2)+Mp,n(b19 b?.)}
m=2

This last bound proves that for all integers p > 2 the quantity in (17) is bound-
ed by the right-hand side of (15). =

6.3. Step 3: End of the proof of Lemma 3. We are now in a position to
conclude the proof of Lemma 3. Let us first recall that the function x — g, (¢, x)
belongs to the set %, (b,, b,+,) with b, =t and b,,; = 1. We note also that if
f belongs to the set %,(b,, bp+1) then f® Ve (by, by) with by = b, and

b2 - bp+1
As p > 2, we have

n—1 n—1
(tAl)Y) m—)0;<n ) (tAG+D)E+1)P720, = M, (¢, 1).
i=0 i=0
Hence, combining Lemmas 5 and 8, we obtain

(29) Eg,(t, S, < C,,{pi2 My My (8, 1)+ M, (¢, 1)+ E(t A sp)).
m=2
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Let &,¢€ ®@,. Taking into account Lemma 4 and the fact that g (x) = x A ¢, we
deduce that

(30) P (x) = +j'w (t A x)v,(dt).
0
The relations (11), (29) and (30) yield
p—2 n—1
(31) E¢,(S) SCp{ Y, Mpa(n 2, P GE+1D)(E+1P7"720)
m=2 i=0 - =

+"nf OP i+ 1) (G +1)P 720,45 4P (s)}-
i=0 -

Now, using the concavity of ¢'P we get
L=

=1 ——dt.

¢p(x) = I (- t)” Lo (tx)dt = x? ¢ (x )I

(p 1)'

Hence we deduce that
(32) xP P (x) < Cp dp(x).
We conclude, combining the inequalities (31) and (32), that

pP—2 n—1
E,(1S) < C, { Zz M, n(n .Zo b, i+ 1)(i+1)"""20)

+n"li1 Gp(i+1)(+1)"2 0,4 dp(sn)}-

Finally, for the suitable choice of the function ¢,: ¢,(x) = x" for re]p, p+1]
and using the inequality (12) in Lemma 7, we complete the proof of Lemma 3.

7. APPENDIX A

This appendix is devoted to the proofs of Theorem 2 and Lemma 2.

Theorem 6 in Doukhan and Louhichi [5] proves the fi-di convergence in
another weak dependence frame. Following their approach but replacing their
dependence conditions by (SWD) sequences, we get the fi-di convergence as
soon as (X;) is (SWD) with 6, = 0~ %), a > 4. This is enough to yield the
Empirical Functional Central Limit Theorem (Theorem 1). However, we prove
here a general Central Limit Theorem (Theorem 2 stated in Section 2) under weak
dependence and we apply it to prove the fi-di convergence. It allows us to weaken
the assumption required for the fi-di convergence to 6, = @ (r~“) with a > 3 (Lem-
ma 2). To prove Theorem 2 we do not use Bernstein’s blocks as in Doukhan and
Louhichi [5] but a variation on the Lindeberg—Rio method (Rio [16]).
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Proof of Theorem 2. In the following, if xeR ., [x] denotes the in-
teger part of x.
We define S, = Xo+...+X,-, and Sy = Xo+...+X,_;. Let

M := sup || X,| -

neN

Let Uy = Var (Sk) —Var (Sk— 1) (So = O).
By assumption,

, Var (S,,). -

6l=——"502>0 as n- .
n
Moreover,
+(k-1)
U = Z COV(Xo, X|l|)
i=—(k—1)

! Hence, as (X,),ny is (SWD) and uniformly bounded by M,
|Cov (Xo, Xl < MO

| and

| +

- Y Cov(Xo, X)<oo as k— oo.

i=—ow

Then Césaro’s theorem yields

¢?:= lim Var(S,) = lim v,.

n— o0 n k- o0
Hence there exists some positive integer k, such that
(33) k> ko=v, = 062/2>0.

Let us set now Y, ~ A7(0, v344), k 2 ko— 1. The sequence (¥,)», -1 is assumed
to be independent and independent of the sequence (X;).~. We also put, for -
k=2ko—2, T, = ZJ —x+1 ¥ empty sums are, as usual, set equal to 0.
Letn ~ A°(0, 1), and by, (x) = Eh(x+ T; ;) := Ely> 4. 1, ,, Where yeR. In
the following, C will denote some arbitrary constant which may vary from line
to line but which is independent of y, k, n. We are in a position to use Rio’s

decomposition. We define

[n/3]
(34) An (hk,n) = Z Ak,n (hk,n) s

|
§ k=ko—1
|

where A, ,(h,) = E (hk,n (Sk+Xp)—hye (S + Yk))-
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Hence
(35) Ay (hen) = E (B (Spy31+ 1+ Tiwyarm) = B (Sko— 1+ Tio —2m)>

where h(x):=1,5,.
Assume that there exists a, -0 as n— oo such that for all y

(36) IAn (hk,n)l g Oy
Setting y = \/r_: z, we get for all z

37) ‘P(S[m'3]+1 + Tin31n < Z)_P(Sko—l + Tio-2.m < z)‘ <u,

. NG
Then, as
Sto-1F Tio-2n 2 ¥0,0% asn-o oo,
n
we obtain
(38) S‘"’”“+Y["’3]“+"'+Y"”1?»./V(o, 6?) as n— .
NG N
Moreover,
(39) I/Er|/3]+1'\|‘/-;-'|‘ ) A —%./V(O, %62) as n—» 0.
n

The convergences (38) and (39) yield

2
(40) Sz LA ./V(O, %) as n— oo.

N

Finally, (40) yields
Ss
n

(41) 2 ¥ (0,6%) asn—oo.

Let us now prove (36). To bound the terms 4, (k) we write
Ak,n (hk.n) = A;c],% (hk,n) - A’c?l)l (hk,n)
with

Bt Bl (St T,

(42) AGA(H) = Eh (S 1+ Tion) —ER (St Ton) ——

43) A2V (h) = Eh (Sy+ Y+ Ti) — ER (S + Ti) — vk2+ ~ER' (Si+ Ti.n)-
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Study of A{2(h). Using Taylor's decomposition we get
Aﬁ:(hkn) =E {h;c,n (S 1(;c}
+E G H (S (YE— s )+ B (S 000 Y Yi},
where 0 < g, , < 1. Using the independence of the processes (¥,),en and (X pnen,

we deduce that

@) 1820 = | E (St 0o T YE)

3) 20 (3) : 0.)3/2.
< B2l ——= \/ﬁ < [l € (Z )

Study of 4{) (). Let us set 4§ (b)) = Eda (). Then, by Taylor’s for-
mula again (with some random t;,€]0, 1[), we write

S (Mim) = X B (S} + 5 i (S1) (X E—vgs1) +%(h§22 (Sk+ Tin X1) X3)-

We analyze separately the terms in the previous expression
1 e 3 3 1o —_—
) IR (St 0 X3) X1 < M2 < C e

We then write
46)  E{Xyhin(Se)+3ha(S)(XE—v341)}
k
= E{X; K., (Sp)} +3 Cov (A (S), X2)—(ERi(Sy) Z E(XoX
We set X, =0 for all p<0and S, =0. Using g(S)—g(0) = Z}.=1(g(S,-)—g(S-_1)),

Taylor’s decomposition and the independence properties of the sequence
(Yizro-1 We get

. k
@n - |Cov (1, (S, X7)| < ClIH2lw Y. 0
i=1
and
_ k X2
“48) Xihi.(S)) =X, Z {Xi—l h;cl,n(Si—l)-I';z'hEg(Si—-l+vk,n,iXi—1)}s
i=1

where 0 < Vien,i <1.
Moreover, using the weak dependence of (X,),.y, We obtain

X;l

EX,
2

R (Si— 1+ Vin Xi— )| <

(49)

C A o i1
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Now, let j:=sup(0, 2i—k). We write
EX  Xio1 lin(Si-y) = E{h;c’,n(Sj‘“l)XkXi-—l}
+E {(Bn (Si-1) =i (Sj-1) Xi Xi_ 1}
We also have, using Taylor’s decomposition,
i (Si— 1) —hia (Sj- Ol < ClIREN o (k—1).
Hence ‘
(50)  |E {(hin (51 )~ Hin(S- 1) X Xi- )] < CUBEN o (K—1) 854
< ClIPleo =i+ 1) O ;4 4.

Then, using still Taylor’s decomposition we get
(51) [Cov (a8, 1), X X, )| < cnha?znmg b
Then, using the relations (48)51) and Z:‘=1 f;: 0,_, < Z::ll if;, we obtain
(52) |E (Xt Hen (Sk))—igkjl E(ha(S;—1)) E(X X 1)| < ClIE2 pZ; pO,.
It remains to bound

{ié ERyn(Sj-1) E (X Xi— 1)} — {ER{ (Si) ii E(X, X))}.
This can be written as

é:l E (1 (Sj-1)— 1w (SW) E (X, X y)-

Using Taylor’s decomposition and the condition k— j+‘1 < 2(k—i+1), we get
k k

(53) | X E(Wa(Si-)—HaS)EXXi-1)| < ClIFllo Y, 6.

i=1 i=1

Then, summing the inequalities (45), (47), (52) and (53), we obtain

k k k
(34) 142l < ClRN o (14 Y 0+ Y. 8) < ClIBEN (14 Y i6)).
i=1 i=1 i=1
Hence using the inequalities (44) and (54), we have
3] n : /3]
69 | T aatiu<C([5|-kot2) sp (14 )
k=ko—1 ko—1<k<[n/3] i=1

It remains to bound suUpy,-1 < <3 1A -
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If

we can prove using (33) that

sup  [Ihllle < Cn732 073 [0]]l,

ko—1<k<([n/3}

where C is independent of y (see also Rio [16]). Hence

“In/31 n
(56) | Y Arn(en) < Cn™ 26731 @||, (14 ) i6).

k=ko—1 i=1 ]
Let us denote by «, the right-hand side of (56). &, does not depend on y and it
tends to O as soon as a > 3/2. Hence, by (41), this completes the proof of
Theorem 2. =

We are now in a position to prove the fi-di convergence. We prove Lem-
ma 2 for one-dimensional marginals. If one wants to prove it for any finite-
-dimensional marginals, it is sufficient to use the following proof with
Zi(tyy .on b)) = Z o;(1x,<i,— F (¢;)), where (¢4, ..., ,)€R" and for arbitrary
numbers day, ..., &,. To prove the convergence of (Z, ())pen : = (Lx, <t —F (t))nen
for some t € R, we apply Theorem 2 to the sequence (Z, (t)),en- First we need the
following proposition:

ProroSITION 1. Let (X,),en be a stationary sequence with common distribu-
tion function F supposed to be Lipschitz. Assume that (X,),en Satisfies the (SWD)
weak dependence condition with a sequence (0,),.x. Then the sequence
(Zn(®)nen : = (Ix,<t— F ()nen, Which is uniformly bounded, satisfies the (SWD)
weak dependence condition with a sequence (0,),n such that there exists some
positive constant D such that 0, <D\/9_,.

Proof of Proposition 1. In the following, C will denote some arbitra-
ry constant which may vary from line to line but which is independent of u, v, r.
Let teR. We want to prove that (Z,(t)).~ satisfies an (SWD) dependence
condition. For this we have to bound

Chao = COV(R(Z,,, ..., Z:), k(Z},, ... Z,,))

for all i; <...<i,<i,+r<j, <...<j, and for all heL®, ke ¥. We write
Z, for Z;(¢). Let us write Z, = ¢ (X,). We want to smooth the function ¢ which
is not Lipschitz. Let ¢ > 0. We consider the following Lipschitz function ¢*
smoothing ¢:

f) = o(x), xe[0,t—elult+e, 1],
e (@A) (P —3ex* + 32 —eY) x— >+ 3182 +26%)—F (1), t—e<x<i+e.

6 — PAMS 222
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We have [|¢%|o < |l¢llo < 1 and Lip(¢°) < 3/(4¢). Hence, arguing as for Lem-
ma 3, we have

IChul < [COV(R(Zss.., Z), k(@(X), - 0(X;))—K(0° (X)), - @° (X))
+|Cov(h(Z, ..., Z), k(9*(X}), - 0" (X))
< C||llo Lip (k) v (e + 6,/¢).
Then if we take & = /6,, we obtain |Cy,, | < C|lhll« Lip (k) v/8,. Consequent-

ly, (Y)uen is (SWD) with 0, < C\/O_,. This completes the proof of Proposi-
tion 1. m

Now, let Si(t) = Yr_, Zi(t) for 1 <i<n, So(f)=0. Let us prove that

Var(S,@) | ..,
n

Let v, (f) = Var (S (£))— Var (S, (¢)). As soon as 6, = O((r+1)7>7%), 6 > 0, we
have

as n— 0.

v, () = % (t) = Eo Cov(Zo (1), Ziy(t)) < 0 as k— 0.

Césaro’s theorem yields then

Var(S,(t)) Yoo, Ui
n  n

—0o(t) as n— oo.

If 62(t) = 0, the convergence of S,(¢)/n is a simple fact. If a%(t) > 0, by
Proposition 1 we are in a position to apply Theorem 2 to (Z, (8))nen to obtain
the fi-di convergence as soon as 6, = @ ((r+ 1)~%) with a > 3. This completes the
proof of Lemma 2.

8. APPENDIX B

Proof of Lemma 5. By induction on p > 2 and using decomposition
(19), we get for any fe%,-,

(57) |[E(fSa)| <G, Z [Ep—2.x (f(p_1))+Ep—2,k(Af(p_1))]+ki R, (f),
k=1 =1

where
Xpt
(p—1)!

R, (f):= ’E[f(sk)—f(sk—l)“---— f(p_l)(Sk—ﬂ:l
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Let now f be a fixed function of the set %,(b,, by+,). In view of (57),
Lemma 5 is proved if we suitably evaluate R,,(f). Clearly,

Ry (f) S Rpiy i (f)+|Cov(XE, fP(Se- )| +E(XE)E|f | (Se-1)
=1+ 15+ 15,
Taylor’s formula and the (SWD) property yield
I < CLE(IXulf (bp A by 1 1XA)),

. k—1 k—1~
Iz,k < C:p[prl-Xkl2 A bp+1 Z 01] < Cp(bp A bp+1) Z ei'
i=0 i=0
Finally,
(58) I3z CpEIXﬂ (bp A bp+1Sn) 1|Xk|$.s,.+CpE|Xfl (bp A bp+1 55) 1|Xk|>s"

<

< CpSE2 (b A bpe1 S E(XD)+CoE(IXul? (by A by IXi)-

The proof of Lemma 5 is complete by noting that, as (X,),.y is bounded by 1,
Y. E(Xyf?(5y A bpet IXd) < (bp Abpe)nly  and Y EXD <. w
k=1 k=1

Proof of Lemma 7. For all positive integers m and all positive real
numbers a and B that are conjugate (ie, 1/a+1/8 = 1), by the Hélder in-
equality we obtain

nil (i+ 1)m—2 ei < ("‘Z:I ei)lla (nil (i+ 1)(m—2)ﬁ 0,-)1”’_
i=0 i=0 i=0

Thus M,,, < s*(M,,,)"%. Hence, for a = (p—2)/(p—m) and B = (p—2)/(m—2)
the inequality M,,, < s?®~™/®~2 ppim=2/=2) holds.

As we also have M,_,,, < s2™®~2 M@ -m=2/(~2) we get the first inequal-
ity in (12). Then, bounding M, , and s§ by the sum M, ,+ s, we get the second
inequality of (12). ’

Now, we prove only (13) ((14) will hold by the same method). Clearly,

n—1
(59) si7™(by A by Sn)(" Z G+ ei) <sp ™Mby Ab, Sn)S:'_z(" Z 9;‘)
{i+1)<(@nAn) i=0
< s5(by A by s,),

n—1

(60) no Y (£7(bs Abas)i+1?0) < My,

i+ 1)Zsn

Collecting the inequalities (59) and (60) we obtain (13). =
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Proof of Lemma 9. We write
S Sk—ip_y-1 +uXi-i,_,)
=[f" Sk-i,-,-1 +uXy—i, )—=f Se-ipo )1+ Sk—ip_,-1),
so the covariance quantity of Lemma 9 is decomposed into two terms:
(61) |Cov(Xy... Xi—i,s Xi—imsr v Ximip_y S Skcipoy—1))|s
(62) |Cov(Xk...X,,_,-m,Xk_imﬂ...Xk_,-p_l[f’(Sk_ip_1_1+uXk_,-p_1)
—f" Sk=ip_ - 01)]-

Step 1. Study of the terms of type (61).
We use the following decomposition:

ICOV (X Xnmis Ximimrs oo Xty Si—iy o))
< |COV (X Xt Ximigers - Xty s L Sty ) Sty -y )|
+|Cov(Xy... Xy—ips Xpoi, s D, (U A (Yo a—
(@) The (SWD) pfoperty yields
[J(ky Ty B4y ey Bp—y)]
:=|Cov(Xy... Xy, Ximimrr o Xy [ Sk=tp- =)= Sk=tp s —rm—1)])|

S Cp(bs Abyry)b,,, where 1y =iy 1 —i,= max (i;—i,_q).
1€qg<sp-2
Thus
k—1 (m),rm k—1
Z Z IJ(k, [ il,..., ip_1)|\<_. Z Cp(bl/\bzl)lp_zel.
rm=0 0=tiSi1 S...Sip—1 =0

Summing up over me{0, ..., p—2} and ke{0, ..., n} in the last inequality
yields

-m p—2 k-1 {m),rm

@ YYYyY Y (K, T s 2o Tpe )

k=1 m=0r,=00<(i)<k—1
n k-1
< Z Z Cplpuz(bl A b2(l+1))el < CpMp,n(bla bz),
k=11=0
where (i) denotes 0 =:ip <i; <...<i,—; <k—1.
(b) We now use the fact
Cov(X, YZ)

= Cov(XY, Z)+E(XY)E(Z)—E(X) Cov(Y, Z)—E(X)E(Y)E(2)
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to get
|COV(Xie - Xt Xty Xy f Skt s —rm—1))|
<|Cov(Xyo. Xty ' Simiy—y—rm—1))|
HEXe. . Xiiy  JE(f' Sk=ip- ~rm—1))|
FHEX - Xi-1,) COV(X iy - Xty o f Sty -y rn—1)
HEX e X i) EXK iy ety JE(f Skt y =)
=115 ens b)) 415G, ooy ipm 1)+ I3 (Ggs ooy Bpm 1) F g gy -y ipey).

Using Lemmas 6 and 7 and arguing as for the inequality (22) we obtain

64) > > L@y, s ip_1)

k=1 0=:ipKi1 S...€ip-1€k—1

+ ¥ Y Ly(igs ..oy ip;l)

k=10=iipSi1S...€ip-15k—-1

p—2
6 Cp {Sg(bl A b2sn)+Mp,n(b1; b2)+ Z Mm,n Mp—m,n(bls bz)}
, m=2
Let us now study I, (i, ..., i,—1).
On the one hand we have, using the (SWD) property:
(65) |Cov(Xk"'Xk—ip_p f’(Sk—ip_l;rm—1))| < C, b1'9r,,.-_
On the other hand, using Taylor’s decomposition, we get

(66) |COV(Xk---Xk—ip-1a fl(Sk—ip—1—rm—1))|

k-1 ; ‘ k—1
=| Z COV(Xk---Xk—i,,;“f'(Sk~i,,)—f'(Sk—ip—1))| < Z C,0,b,.
ip=ip-1+trm+1 I=rm+1

Moreover, we write
ICOV(Xs - Xumiy 1o Sty 1)
= |Cov(Xk.. Xkmipys £ Skmip—s—rm—1))| Loy <roubs
+|COV(Xx . Xamiy s [/ Skmty - s —ro—1))| Lbs > st

The inequalities (65) and (66) yield

n p—2 k—1 (myrm
z Z Z Z ICOV(Xk""Xk_ip—l’ f’(Sk—ip—l—rm-l))l lblsrmb; < CpMp.n(bi: bz)-

k=1 m=0r,=0 (@)
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If now we note that

k-1 k-1 k—1la{b1fb2)
-2 -2
rP20,<yY Y P20,
rm=0,rm<by/bz I=rm+1 =1 rm=0

using once more the inequality (66) we also get

n p—2 k—1 (m)hrm

Z Z z Z |C0v(Xk"'Xk—ip-1= f’(Sk—ip—l—rm—l))| 1b1>rmb2

k=1 m=0rm=0 (i)
<C,M,,(by, by).

Consequently,

67 Y Y Ii(i1s «eer ip—1) < Co My, (by, by).

k=1 i1€...Sip-1 k-1

To bound I (iy, ..., i,—1), We use the (SWD) property, as for the bound of
Iy (iy, ..., ip-q), and Lemmas 6 and 7. We obtain

Z ZIS(ila AR ip—l)
k=1 (i)
p—2
< C.P {Mp,n(bh b2)+S£(b1 A bzsn)+ z Mm,nMp—m,n(bl: bZ)}:
m=2

which provides a bound for the sum of the terms of type (61).
Step 2. Study of the terms of type (62).

Using Taylor’s decomposition we get
|C0V(Xk---Xk—i,,., Xk—i.,.ﬂ---Xk—ip-l [f'(Sk—i,,_1—1+uXk—i,,_1)—f'(Sk—ip-1—1)])|
< C,(by A by)0,,.

Consequently, if (k) denotes 1 < k < n and if (i) denotes i; < ... <i,—; < k-1,
we have

(68) Z ICOV(Xk---Xk—i,,., Xi—imey oo X—ty LS Skt -1 +uXp—y, )
(k). (8)

—f" Sk=ip-s-D])|

<nCp ),

o

n—1
772 (by A by (i+1)0; < C, My, (by A by).

13

The inequalities (63), (64), (67) and (68) yield the proof of Lemma 9. =&
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