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1. INTRODUCTION 

In this paper we essentially give a Functional Central Limit Theorem (The- 
orem 1) for the empirical process of stationary weakly dependent sequences, 
which improves on results in Doukhan and Louhichi [ 5 ] .  Our dependence 
frame is described in Section 1.1. The main steps to obtain our theorem are 
a new moment inequality (Lemma 3) and a Central Limit Theorem (CLT) 
(Theorem 2). 

Moment inequalities under independence have already been studied. We 
recall here the Rosenthal inequality 

E ISnIr < C, {(Var SJi2 + nE IXII'), 

where X = (XI, . . . , X,J is a centered vector of independent and identically dis- 
tributed (ii.d) real-valued random variables with finite variance, S, = XI + . . . + X,, 
So = 0, and r E 12, + co [. Doukhan and Louhichi [5 ]  obtain Rosenthal inequal- 
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ities under weak dependence, but exponents are restricted to be even integers. 
Louhichi 1121 gets moment inequalities of order r €12, + m[ for a class of se- 
quences satisfying the property : the nun-correlation yields the independence. This 
property is called the (AG)-property and is satisfied by associated and Gaussian 
processes. In this paper, we extend Louhichi's moment inequalities to weakly 
dependent sequences (Lemma 3 stated in Section 3). Weak dependence used 
here is precised by Definition 1 in Section 1.1. Examples of such sequences are 
described in Section 1.2. The tightness of the empirical process is deduced from 
these moment inequalities. Another application of our moment inequalities is 
a Marcinkiewicz-Zygmund Strong Law (MZSL) for partial sums of bounded 
dependent random variables (Corollary 1). 

We prove then a Central Limit Theorem from which we deduce the fi-di 
convergence. Its proof relies on a variation on the Lindeberg-Rio method (Rio 
[ld]) and not on Bernstein's blocks (used e.g. by Doukhan and Louhichi [5] to 
prove the fi-di convergence). 

We relax assumptions of previous authors for both tightness and fi-di 
convergence. 

The paper is organized as follows. Our main result is stated in Section 2. 
In Section 3 we state our new moment inequalities. We also write a corollary 
concerning rate of convergence for an MZSL for partial sums in our depen- 
dence frame. Finally, Sections 4, 5 and 6 are devoted to the proofs of the main 
result, of the corollary concerning an MZSL and of our moment inequalities, 
respectively. We defer the proof of the Central Limit Theorem and of some 
technical lemmas to Appendix A and Appendix B, respectively. 

1.1. Weak dependence. Our dependence frame is a variation on the one in 
Doukhan and Louhichi [5]. We work here under a causality assumption which 
is fundamental in the proof of our moment inequalities (see Section 6). More 
precisely, E being some Euclidean space Rd endowed with its Euclidean norm 
II-II, we shall consider a sequence of E-valued random variables (X,),,,. 
We define Lm as the set of measurable and bounded numerical functions on 
some space R", r n ~ N * ,  and its norm is classically written l l . I I , .  Moreover, 
let UEN* be a positive integer. We endow the set F = EU with the norm 
Il(xl, . . ., xJ1lP = llxlll +. . . + flx,ll. Let now h: F = Eu -, R be a numerical func- 
tion on F, and let us set 

Lip (h) = sup -hIy)l 
X + Y  I I x - Y I I P  

for the Lipschitz modulus of h. Define 

m 

2 = U { h € L m ( F ,  R); Lip(h) < oo) 
u =  1 
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D-N 1. The sequence (XJEN is S-weakly dependent (SWD) if for some 
sequence 8 = (Or),, decreasing to zero at infinity, for any u-tuple ( i , ,  . . ., i,), 
u E N*, and for any v-tuple ( j l  , . . ., j,), EI E N*, with il < . . . < i; < i,+ r < 
jl < ... < j v ,  and h€L"O, k ~ 9 ,  

1.2. Examples. Before stating our results, we give examples of (SWD) se- 
quences in this section. 

DEFINITION 2. Let (qn)., be a stationary sequence of real-valued random 
variables and F  be a measurable function defined on RN. The stationary sequence 
(X,),,z defined by X, = F (q,, q , - ,  , q,- 2, . . .) is called a causal Bernoulli shift. 

We denote by ( B , h ,  any non-negative and non-increasing seqienoe such that 

Causal shifts with i.i.d. innovations (qJkEZ satisfy (2) with 0, (see Doukhan 
and Louhichi [ S ] ) .  

Examples of such situations are the following: 
m The real-valued functional autoregressive model: 
I f T : R + R i s  such that IT(u)-T(u')l<clu-utl for s o m e O < c < l  and 

for all u, u'ER,  and if (qJEz is some i.i.d. innovation process satisfying 
E I V O I  < a, (Xn)n, defined by 

is (SWD) with Or = Ccr for some constant C > 0. 
e The non-mixing stationary Markov chain with i.i.d. Bernoulli innova- 

tions (P(qo = 0 )  = P ( q o  = 1 )  = 1/2) X n = ( X n - l + q , ) / 2  is (SWD) with 
0, = 0(2-3; its marginal distribution is uniform on [0, 11. 

e Chaotic expansion associated with the discrete chaos generated by the 
sequence (~lt)tEz: 

In a condensed formulation we write F (x)  = x,"_,F,(x) ,  X E  R ~ ,  for 

where Fk(x) denotes the k-th order chaos contribution and F o ( x )  = aho) is 
only a centering constant. In short, we write, in the vectorial notation, Fk (x) = 
x j E N k a y ) x j .  Processes associated with a finite number of chaos (i.e. Fk = 0 if 
k  > ko for some ko EN) are also called Volterra processes. A simple and general 
condition for g-convergence of this expansion, still written in a condensed 
notation, is 
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This condition allows us to d e h e  the distribution of such shift processes. 
A suitable bound for 8, is then 

- If B31qol = 0 and 

Fk[x)= x a;), -,,, j k X j l X j  z... X j R ,  k > l ,  
O < j l <  ... < j k  - 

z E 2 k  then Or = j, , ... , jx ,  jk,, (.I:! ,,,, jJ ( VO) ) I t 2  

- Linear processes X, = Ckrn=, a,g,-, which include ARMA models are 
those with Fk(x) 0 for a11 k > I. A first choice is 0, = E Iqol z,,, lakl for the 
linear process with i.i.d. innovations such that E lqol < m . For centered and I? 
innovations, another choice is thus 

I 

- The simple bilinear process with the recurrence equation X, = ax,-, 
+bXt-l?t-l+?t. 

Such processes are associated with the chaotic representation in 

F ( x )  = C x j - n  (a+ bx,), X E R ~ .  
j = l  s = O  

If c = E la+ bt01 < 1, then 0, = (c' (r + l))/(c- 1) has a geometric decay rate. 
- ARCH (m): The recurrence equation Xt = (a + x:= bj X,- j)  q, has the 

stationary solution 

where a 2 0, bj 2 0 for all j, Em=, bj < m, and (rk)kflV is a sequence of i.i.d. 
non-negative random variables (see e.g. Giraitis et al. [B]). Then we can prove 
that the process (XdtEz is (SWD); see Doukhan and Louhichi [6] .  

2. THE EMPIRICAL FUNCTIONAL CENTRAL LIMIT THEOREM 

Let (X,JnEN denote a stationary sequence of real-valued random variables. 
In this section we investigate some properties of the empirical process con- 
structed from the stationary sequence (X,),,,. 

We get a Functional Limit Theorem for the empirical process under the 
(SWD) weak dependence condition. We consider a stationary sequence (X,),, 
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of random variables with common distribution function F. For t E R, we con- 
sider the following processes: 

1"-1 
( ) : = -  1 and ~ . ( t ) : = & ( ~ , ( t ) - ~ ( t ) ) .  

? k=0 
We have the following result: 

THEOREM 1. Let (X,JnEN be a stationary sequence of real-valued random 
variables with common repartitian function F supposed to be Lipschitz. Assume 
that (X,) satisfies the (SWD) dependence condition with 8, = 0 ( (v+ l ) -2 -2J ' - '  ) 
for some v > 0. Then the sequence of processes (U, ( t ) ;  ~ E R ) , > ~  converges in 
distribution in the Skorohod space 93 (R)  to the centered Gaussian-process indexed 
by R with covariance dejned by 

In fact, Theorem 1 can be decomposed into two parts: the tightness and 
the fi-di convergence. 

LEMMA 1 (Tightness). Let (X,),, be a stationary sequence of real-ualued 
random variables with common distribution function F supposed to be Lipschitz. 
We assume that (X,), fulfills the (SWD) dependence condition with 
8, = O ((r + l ) -2-2JZ-v)  for some Y > 0. Then the sequence of processes 
(U, (t); t E R), ,  , is tight in the Skorohod space 9 (R). 

Lemma 1 is proved in Section 4. It clearly improves on Doukhan and 
Louhichi [5] who assume 6, = O (r-(5 + ' I ) ,  v > 0. Indeed, in order to obtain 
tightness, those authors calculate the moment of order 4 of the partial sums. 
Here we have just to calculate some moment of order 2+$ as shown in the 
proof of Lernma 1. Lemma 3 in the next section allows us indeed to calculate 
the moment of order r which is not necessarily an integer. 

The fi-di convergence is deduced from the following 

THEOREM 2 (Central Limit Theorem). Let (X,),, be a stationary sequence 
of centered (SWD) weakly dependent random variables with 0, = O ((r + 1)-") for 
some a > 3/2. We assume that (X,),, is unformly bounded. If S, = X ,  
+...+ X,-,, we assume that 

Then 
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The method of proving Theorem 2 is a variation in the Lindeberg-Rio 
method (Rio [16]). From Theorem 2 we deduce the following lemma: 

LEMMA 2 (Fi-di convergence), Let (X,,),, be a stationary sequence ofraal- 
-valued random uariabIes with common distribution function F supposed to be 
Lipschitz. Assume that (X,),,, satisfies the ( S W D )  dependence condition with 
a sequence : = ((r + l)-a)r,N. Let a 3 3. Then the finite-dimensional mar- 
ginal~ of the process {U, (t); t E R], ,  converge in distribution to the jinite-dimen- 
sional ma~ginals of the centered Gaussian process indexed by R with covariance 
defined by - 

The proofs of Theorem 2 and Lemma 2 are defered to Appendix A. The 
condition 8, = 6 ((r+ for some 6 3 0 in Lemma 2 improves the condition 
0, = O ( I - - ~ )  obtained b y  Doukhan and Louhichi [S] for fi-di convergence. 

Now both the tightness result and the fi-di convergence result yield Theo- 
rem 1. 

I 
3. MOMENT LNEQUAQITIJZS 

In the statements of the main results in Section 2, we consider an (SWD) 
sequence (X,JncN. To prove the tightness in Lemma 1, we need moment in- 
equalities for the partial sums of a sequence (Y,) = (rp (X,)). We prove in Section 4 
that (Y,),,, is also s-weakly dependent. Therefore the goal of the following 
lernma is to give moment inequalities for (SWD) sequences. Doukhan and 
Louhichi [5] prove moment inequalities for weakly dependent sequences. But 
the order of-these inequalities is an integer not less than 2. Recently, Louhichi 
[12] has proved moment inequalities of order r €12, + co[ but for sequences 
satisfying the (AG)-property. The following variation on Louhichi's lemma 
[12] entails moment bounds of order r €12, + CQ[ for (SWD)-sequences: 

LEMMA 3. Let r be a$xed real number greater than 2. Let (X,) be a station- 
ary sequence of centered and (SWD) random variables. Suppose moreover that 
this sequence is bounded by 1. Let S,, : = XI + X ,  +. . .+X, for n 2 1 and 
So = X o  = 0. Then there exists a positive constant C, depending only or r such 
that 

n - 1  n - 1  
where M,,, : = n xi= (i+l)'-2 Oi, and st  := M2, ,  = nEi=,, Oi. 

I 
i 
I 

We prove Lemma 3 in Section 6. 
1 
i These moment inequalities also allow us to study the rate of convergence 

! 
for a Marcinkiewicz-Zygmund Strong Law for partial sums of bounded depen- 
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dent random variables. Such results appear for example in Lai [9 ]  and in 
Berbee [l] for the mixing case and in Louhichi [lo] for the associated case. 

Let us first introduce the notion of r-quick convergence as in Lai [9]. 

DEFINITION 3. A sequence (ZJnEN of random variables converges to O 
r-quickly (r > 0) if 

E (NJ < cx, for all E > 0, 

where N,:= sup{n 3 1: IZ,I 2 E}. 
- 

I Note that the convergence Z, -, O r-quickly for some r > 0 implies Z ,  4 0 
I a.s. 

The following corollary is a convergence theorem for s-weddy dependent 
variables. 

COROLLARY 1. Let (X,)n3 be a stationary sequence of centered and (SWD) 
random variables. Let r be a fwced real number greater than 2. Suppose moreover 
that this sequence is bounded by some positive constant M. Assume that the 
eoeflcient of (SWD) satisfies 8, = O (lq -I- l)-a) with D > r - 1. Then: 

at for all < a 6 1, for all k < (a-i)r-1, and for all E > 0, we have: 

nk P (max ISj] 3 ma) < CQ; 
n 3 l  j < n  

e for all 1 2 a > 4, for all 1 < pa < (a-4)r + 1, we have the following four 
assertions: 

1. ~ n , l n w - 2 ~ ( m a x j G n J S j J  2 En") rn for all E > 0, 
2. E {sup,, , (lS,I - &na)}(pa- ''1" < ao for all E > 0, 
3. En,, npa-2 P ( ~ u p ~ ~ ~ j - " I S ~ l  2 E )  < ao for all E > 0, 
4. n-" S, + 0 (pa - 1)-quickly. 

The proof of Corollary 1 is given in Section 5. 

4. PROOF OF THEOREM 1 

This section is devoted to the proof of the main result (Theorem 1) stated 
in Section 2. We prove the Functional Limit Theorem (Theorem 1) in 2 steps: 
the tightness and the fi-di convergence. 

Proof of Lemma 1. In the following, C will denote some arbitrary 
constant which may vary from line to line. Let s < t be two real numbers. We 
want to apply moment inequalities of Lemma 3 to the sequence 
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So we have to prove that this sequence, denoted by (K)nzN, satisfies an 
(SWD) dependence condition. For this we have to bound 

for all i, <,..< i , < i , + r < j l  <.. .<ju and for all h€Lm, k ~ 9 .  Let E > O  
such that s + E < t - E .  Let us write Y, = rp ( X J .  We want to smooth the fmc- 
tion cp which is not Lipschitz. For this we consider the following Lipschitz 
function q' smoothing rp: 

o rp, is equal to q on ]-coy s-E] v]s+s,  t-E] v ] t + s Y  +a[; 
o for S-E < x 6 S+E, 

e for t-E < x < t + ~ ,  

We then have IlrpEllm < {1cp11 < $ and Lip (503 < 3/(8e). Consequently, we 
obtain 

ICh,u,vI I C O V ( ~ ( K ~ ~  - Xu), k('P(Xji)> - v (Xju))-k(~E (Xjl)y - -  - 9  ~ ' ( x ~ ~ ) ) ) l  

+ I C O V ( ~ ( ~ ~ ~  --., K,,)3 k(@(XjJ, - * - ,  qEWjv)))1 
u 

< 2 I IhI I m Lip (k) C E I9 W j i )  - qE (XJI + I lhl I m Lip (k) Lip (qE) or v 
i =  1 

< 2jlhllm Lip(k)~2IIrpll~ P(Xo€]S-E, S+E] u]t-E, t + ~ ] )  

+ Ilhll m Lip (k) Lip ( ( ~ 3  Qr v 

< I lhl l m Lip (k) u ( 8 ~  Lip (F) + (3er)/8c). 

In the following, C denotes some positive constant which may vary from 
line to line. So we have 

Ic,,u,ul < c Ilhllm Lip (klv I&+ 8 r l ~ ) .  

Then if ,/& < (t-$12, we take E = A ,  and get 

@I Ich,u,ul  4 Cllhllm ~ i ~ ( k ) v & .  

Moreover, IC, ,.,, 1 = ICov(h (x,, . . ., K,,), k(Yj, ,  . . ., 5")- k (TI ,  . . . , qu))I, where 
we consider I.',' = q(X:) with (X:),, independent of (X,),, such that for all 
 EN, Xn - X,. Hence 
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and 

(7) Ich,",vl 6 c llhllm Lip ( k )  (F(t)-F(s))- 

Using (7) and the property that F is Lipschitz, we deduce that 

I~h , , , , l  G cllhllm Lip(kIuIt-sl. 

Hence, if ,/& 3 (t-s)/2, we obtain 

Therefore, for a l l  numbers s < t the inequality (6) holds. From thk inequalities 
(6) and (7) we infer that 

So (Y.).., is (SWD) with 8: ,< c((F(t)- F (s)) A A). We prove the tightness 
applying Lemma 3 to (K),,,. In the following, C, denotes some arbitrary 
constant which depends only on r and which may vary from line to line. Notice 
that 

? n - 1  

If we write 8, = r-", a > 0, we get 

Hence if a > 2 and if a > 2(r-l), then 

Now, if we choose r = 2 +,,h as F is continuous, it follows from Theorem 2.1 
in Shao and Yu [I71 that the sequence (U, (t), t E R} is tight in the Skorohod 
space 9 (R) as soon as a > 2 + 2 f i. The choice r = 2+ $ minimizes the 
condition on the dependence coefficient a. This completes the proof of the 
tightness. EI 

To conclude the proof of Theorem 1 we have to prove Lemma 2 of fi-di 
convergence. For this purpose we use a Central Limit Theorem (Theorem 2) 
whose proof is given in Appendix A. 

Now Lemmas 1 and 2 together yield both the tightness and the fi-di 
convergence as soon as a > 2 +2 $. This completes the proof of Theorem 1. 
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5. PROOF OF COROLLARY 1 

In this section we prove Corollary 1 stated in Section 3. Assume that 
C, still denotes some constant, depending only on r, which may vary from line 
to line. 

We apply the moment inequalities to the partial sums of (XJIW). As 
D > r- 1 and P > 2, we get for all n large enough: 

We then apply maximal inequalities in Moricz et al. [I31 and the Bienaymk- 
Tchebysheff inequality to obtain, for < o: G 1, k < (a -4) r - 1 and for all 
E > 0, 

P (  max lSkl 2 ma) < Cr,e n(r/2)-ar, 
1 S k S n  

where C,,, depends only on r and E. 

From (9) we deduce (5) in Corollary 1. Now, Lemma 2 in Chow and Lai 
[2] together with ( 5 )  yield the assertions 1 4  of Corollary 1. 

The next section is devoted to the proof of moment inequalities stated in 
Lemma 3 of Section 3. 

6. PROOF OF LEMMA 3 

The proof is a variation on Louhichi's method [12] under our dependence 
frame. Let p 2 2 be a h e d  integer. We define the function 8,: R + x R -+ R+ as 
in Louhichi [12]: 

1 
(10) g,(t, x) := - 

(P+ l)! 
[xp+l l o < x < t + ( ~ P + l - ( ~ - t ) P + l )  l*,,] 

for any x 2 0 and g, (t, x) = g,(t, -x). Then we decompose the proof into 
several tool steps, 

6.1. Step 1: Main terms. Let p 2 2 be a fixed integer and %?, be the class 
of real-valued, p times continiuously differentiable functions f such that 
f (0) = .. . = f @)(O) = 0. Let YP(b,, bP+,) be the subclass of %,+, such that 
I l f @ ) l l m  < bp and I l f @ f l ) l [ m  < I J , + ~ ,  where I l f ( ' ) l l m  = supxE~I f ( 9 ( ~ ) I  and f(') de- 
notes the differential of order i of the function f. We recall a result of Louhichi 
[12], which is a generalization of the equation (4.3) in Rio [15]. 

LEMMA 4. Let p be a fixed integer, p 2 2. Let 4 , ~ @ , ,  where 

@, := (4: R+ + R+; t$ convex, r$ (0) = #J'(O) = . .. = $(P)(O) = 0, 
4(P)  non-decreasing, concave}. 
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Suppose that lim,, , 4F+11 (x) = 0. Then 

where vp is the Stieltjes measure of -4f+l) defined by v,(dt) = -ddF+l'(tj. 

Lemma 4 together with Fubini's theorem yields 

Consequently, we deduce the estimation of E$, (JS,J) from that of Eg, (t, S,). 
Hence the goal of this step is to bound Ef (S,) for a "good" set of real-valued 
functions f containing the functions x -P g, (t, x), t 2 0. 

We notice that the function x + gp(t, x)  as defined by (10) belongs to the 
set Fp(b,, bP+,) with b, = t and b,,, = 1. Hence we give in this step an es- 
timation of Ef (S3 for f .sFp(bP, b,,,). Let us first exhibit the main terms 
which appear in the proof: 

where 

and 

Then we denote by A,,, (respectively, by A,,,(f), A,,,(A f)) the sum EL=, 
tres~ectivel~, z;=, E , k  (f 1, x;= 1 E,,k(Af )I. 

For a real-valued function f that belongs to the set Fp(bp, b,,,), the 
quantity I E  (f (&))I is evaluated by means of the main terms Ep-2,k (f (P-l)) and 
E,- ,,k ( A  f (P- I)) as shown in the following lemma. 

LEMMA 5. Let p be u$xed integer, p 2 2. Let (X3 be a sequence of (SWD) 
random variables, centered a d  bounded by 1. Then there exists a positive con- 
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stunt C,, depending only on p, such that for any f €Sp(bP, b,,,) 
n -  1 

The covariance terms in Louhichi [I21 are replaced here by bounds de- 
pending on Pr) , , , .  - 

Lemma 5 is proved in Appendix B. 

6.2. Step 2: Evduadon of the maim terms EP-za (f) and Ep- l , k  (A f). The 
purpose of the second step is to evaluate the main terms E , - , c ( f )  and 
Ep-2,k(A f )  of Lemma 5. We need first the following preparatory lemmas. 

6.2.1. Preparatory lemmas. Let us recall the following notation: 

LEMMA 6 @oukhan and Louhichi [ 5 ] ) .  Let (X,) be a centered sequence of 
(SWD) random variables. Suppose that (Xn) is unrormly bounded b y  1 .  Then, for 
any integer p 2 2, there exists a positive constant Cp such that 

Lemma 6 is established by Doukhan and Louhichi [ 5 ]  in order to give 
moment inequalities with integer order p. 

The following lemma will often be used in the sequel and is proved in 
Appendix B. 

LEMMA 7 (Holder's inequalities). For all p 2 4 and m E (3, . . ., p - I), we 
have 

Define 

Then 

a d  also 



FCLT for weaklv denendent seouences 27 1 

6.22. The basic lemma. The following lemma is the basic technical lemma 
of this section. 

LEMMA 8. Let f be a real-valued function of the set Pi (bl, bz). Let (Xn) be 
a centered sequence of (SWD) random variables. Suppose that (X,) is unijorrnly 
bounded by 1 .  Then, for any integer p 2 2, there exists a positive constant 
Cp depending only on p, such that 

The right-hand side term of (15) is similar to the one obtained in Lemma 5 
by Louhichi [12]. However, details of the proof are different in view of the kind 
of the dependence assumed. 

P r o  of o f  Lemma 8. Using induction on p 2 2, we will prove that each 
of the terms CE=, EP-,,, (A f )  and x:=, Ep- ,,, (f is bounded by the right- 
-hand side of (15). 

For p = 2, we refer to Louhichi [10]. We can also deduce the calcuIations 
for the case p = 2 from the general case that we state just below. 

Suppose now that (15) holds for the order p- 1. We will prove it for p. Our 
purpose is then to evaluate the following sums: 

and 

We argue as Doukhan and Portal [7J: Let 0 =: io < i1 < . . . < ip-, < k- 1 
be a fixed sequence of increasing integers, let rn be the smallest integer for which 

I , : =  k+l-im = max (iq-iq-,). 
l < q < p - 2  

Finally, let z'"' o=:io<il< ... < i p - 2  denote the sums over the subdivisions . . il < . . . < ip-z < k- 1 for which the big lag maxi<,<,-, (r,-~,-~) is reached at 
the index m. 

w e  also set ~ ( r n ' " ' y "  O = : i o < i l <  ... < i , - ~ < k - 1  for sums over the subdivisions 
il < ... < ip-z such that the big lag im+l-im = maxl~,~,-2(iq-iq-1) is equal 
to r,. 
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Hence, if B denotes a subset of Np-2 and g is a positive function on Np-2 ,  
then 

We mean by the notation ( O = : i o < i l < . . . < i p - a < k - l ) ~ B  that 
(il ,..., i p - , ) € B  and that O = : i o < i l < . . . < i p - , < k - 1 .  - , 

Study of the  bound of ( 1 6). We ndte the following decomposition: 
for g continuous and daerentiable, if g(0)  = 0, then 

where for all 1 6  k < n ,  0 < uk < 1.  
Now we use calculations on the function f' instead of f. The function f' 

appears thanks to Taylor's formula (cf. the equality (19)). Let us go into further 
details. 

First, we write 

The last decomposition yields 

Evaluat ion  O f  z i14 . . . h ip - ;  J2 t i l ,  . . . , i, - 2). The relation E (X Y) = 
Cov (X, Y) + E (X) E (Y) can be written as 

The function f belongs to the set P1 (b, ,  b,). Hence, using Taylor's formula 
(recall that f (0) = f'(0) = 0), we obtain 

which yields 
(22) I E ( f  (Sk-ip-2-rm-l))l d ~ n ( b l  A b2 ~ n ) .  
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We deduce from the last bound and Lemmas 6 and 7 that 

In order to evaluate the first term of the right-hand side of (21), we use the 
following lemma whose proof is defered to Appendix B. 

LEMMA 9. Let (X,) be a centered sequence of (SWD) random variables. 
Suppose that (X,) is unijiomzly bounded by 1. Then, for any integer p 2 2, there 
exists a positiue constant C, such that for any f (bl, b2).: 

PI p-2 k - 1  (nt),r, 

C C C  C sup I C O V ( X ~ . . . X ~ - ~ ~ ,  
k = l  m=Or,,,=O O=: io< i ld  ... $i,-i u~[o-l]  

Now, the first equality in (19) and Taylor's formula yield 

k-  1 

C sup ~ C 0 v ( x , . . . ~ , ~ ~ , - ~ ,  
(i) ip-l=ip-2+rm+l~[0,11 

where (i) means O,< i, 6 . . . < ip-2. 

XI-'-. Remark 4. TIC3 two S ~ ~ s  E ~ ~ ~ ~ ~ . . . < ~ ~ - ~  tp - I - g  p-2+,.m+l are taken over 
the subdivisions 0 < il < . . . < ip- < k - 1 such that 

. . ~, := i ,+~-&,=  max (aq-tq-l) 
l C q < p - 2  

and that i,- - ip- 2 r,  -I- 1. Hence ip- -ip-2 is the big lag of the subdivision 
0 < i1 < . . . < i,- 6 k- 1. Consequently, if we sum some positive quantities, 
we obtain 
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We take the sums over rn: 0 < m < p - 3 ,  r,: 0 < r, < k-I ,  and over k: 
1 < k < n in (24), and we use Remark 4 and Lemma 9 to obtain 

We deduce from (21), (23) and (25) that 

of E i l G . . . < i p - 2  Jl ( i l , .  . ., ip-,). Let US note that 

Using the decomposition (19) and Remark 4, we then deduce 

To give a bound for the sums over k, m and r ,  of the right-hand side of (27), we 
use Lemma 9 in order to evaluate the first term, and for other terms we use 
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Lemmas 6 and 7 and, respectively, the inductive assumption, the inequality (25) 
and the inequality (22). We thus obtain 

From the inequalities (ZO), (24), and (28) we get - 

The last inequality proves that the quantity in (16) is bounded by the right- 
-hand side of (15). 

S t u d y  of the  bound of (17). Using again the fact that IE(XY)I 6 
ICov(X, Y)J +IEXI IEYl, a Taylor expansion, the inductive assumption, and 
Lemma 9 we obtain 

This last bound proves that for all integers p 2 2 the quantity in (17) is bound- 
ed by the right-hand side of (15). rn 

6.3. Step 3: End of the proof of Lenuna 3. We are now in a position to 
conclude the proof of Lemma 3. Let us first recall that the function x + g, (t, x )  
belongs to the set Pp (b,, bP+,) with 6, = t and bp+ = 1, We note also that if 
f beIongs to the set Fp(bp, bp+l), then f (p- l )~Fl(b l ,  bz) with bl = b, and 
b2 = b,+l. 

As p 2 2, we have 

Hence, combining Lemmas 5 and 8, we obtain 



276 C. Prieur 

Let @, E ep. Tahng into account Lemma 4 and the fact that g@) (x)  = x A t, we 
deduce that 

+ m  

4f) (x) = (t A X) lrp (d t )  . 
a 

The relations (1 I), (29) and (30) yield 

Now, using the concavity of $JP) we get 

xP  1 t(1 -t)P-l 
#p (XI = --- j (1 - t)P - I #$) ( t x )  d t  2 xP #$'I (x) j dt .  

( ~ - l ) !  0 0 d a - I ) !  
Hence we deduce that 

We conclude, combining the inequalities (31) and (32), that 

Finally, for the suitable choice of the function 4,: #, (x) = x' for r ~ ] p ,  p + l] 
and using the inequality (12) in Lemma 7, we complete the proof of Lemma 3. 

7. APPENDIX A 

This appendix is devoted to the proofs of Theorem 2 and Lemma 2. 
Theorem 6 in Doukhan and Louhichi [5 ]  proves the fi-di convergence in 

another weak dependence frame. Following their approach but replacing their 
dependence conditions by (SWD) sequences, we get the fi-di convergence as 
soon as (Xi) is (SWD) with 0, = O(r-3, a 2 4. This is enough to yield the 
Empirical Functional Central Limit Theorem (Theorem 1). However, we prove 
here a genera. Central Limit Theorem (Theorem 2 stated in Section 2) under weak 
dependence and we apply it to prove the fi-di convergence. It allows us to weaken 
the assumption required for the fi-di convergence to 8, = 6 ( r -7  with a > 3 (Lem- 
ma 2). To prove Theorem 2 we do not use Bernstein's blocks as in Doukhan and 
Louhichi t5] but a variation on the Lindeberg-Rio method (Rio [16]). 
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Proof of T h e o r e m  2. In the following, if XER,, [ x ]  denotes the in- 
teger part of x. 

We define S, = Xo+. , .+Xn-l  and S, = X,+ ...+ X k - , .  Let 

Let q = Var (Sk)-Var (Sk- (SO = 0). 
By assumption, 

Moreover, 

Hence, as (X,), is (SWD) and uniformly bounded by M ,  

and 

Then CCsaro's theorem yields 

cZ . - Var (Sn) . - lim - = Jim u,. 
n+m ?I k-c m 

Hence there exists some positive integer ko such that 

Let us set now Y ,  - JV (0, vk+ k 2 ko - 1. The sequence ( U B k o -  is assumed 
to be independent and independent of the sequence (X,),,. We also put, for 

n- 1 
k 2 k,-2, T, ,  = &,+, Yj; empty sums are, as usual, set equal to 0. 

Let q -N(O, I ) ,  and hk , , ( x )=Eh(x+T , , , ) :=E1 ,~ ,+Tk ,n ,  where ~ E R .  In 
the following, C will denote some arbitrary constant which may vary from line 
to line but which is independent of y, k, n. We are in a position to use Rio's 
decomposition. We d e h e  

where A,,, (hk,,) = E (hk,n ( ~ k  +Xk) - hk,n (Sk + K)). 
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Hence 

(35) A n  (hk$  = E (h ( S [ n / 3 ] + 1 +  q n / 3 1 , n ) - ~ ( ~ k o -  1 -k rko-2,nl)r 

where h ( x )  := lY3,. 

Assume that there exists an + 0 as n + such that for all y 

(36) IAn ( h k , 3 1  G MR. 

Setting y = h z ,  we get for all z 

Then, as 

we obtain 

(38) 
S I ~ I ~ I + ~  + ~ ~ 1 3 1 + 1 + ' . . + ~ - 1 3  ~ ( 0 ,  P) as n + m. 

J;; J;; 
Moreover, 

The convergences (38) and (39) yield 

Finally, (40) yields 

Let us now prove (36). To bound the terms A k , n ( h k , n )  we write 

" hk,n) A k , n ( h k , n )  = Aif#! (hk,n)- Afr,n ( 

with 

Uk+ 1 
(42) A&!, (h) = Eh ( S k +  1 -k Tl,")-Eh ( S k +  T k , 3 - T E K ' ( S k +  
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Study of AiTi (h). Using Taylor's decomposition we get 

df; ( h k , n )  = E ( 4 . n  (Sk) KTR) 
+ E  (4 ( S k )  ( y : - u k +  1) ++hi:; ( s k  f @k,n yk3), 

where 0 < Q,,, < 1. Using the independence of the processes (aEN and (X,),,,, 
we deduce that 

Study of Aiti (h). Let us set Aiti (hk, , )  = EJ~,! (h,.,,). Then, by Taylor's for- 
mula again (with some random z ~ , ~ E ] O ,  ID, we write 

di;; ( h k , n )  = X k  h i , ,  (SR) + 3 &,n (Sk) ( X i  - Vk+ 1 )  +$(hi:; ( s k  + Tk,n  Xk) ~ 2 ) -  
We analyze separately the terms in the previous expression 

We then write 

We set X, = 0 for al l  p < 0 and So = 0. using g ( ~ ~ - g ( ~ )  = ~ = l ( g ( ~ j ) - g ( ~ j - l ) ) ,  

Taylor's decomposition and the independence properties of the sequence 
( X ) k , k , -  1 we get 

k 

and 

where 0 c v ~ , ~ , ~  < 1. 
Moreover, using the weak dependence of (X,),,, we obtain 



Now, let j : = sup (0, 2i - k). We write 

We also have, using Taylor's decomposition, 

Hence 
- 

(50) 1~ { ( h ~ , n ( ~ i - l ) - ~ . n ( ~ j - l ) ) x k ~ i - l } ~  c ~ ~ h ! c ~ ~ ~ ~ m ~ k - ~ ) ~ k - i + l  

Then, using still Taylor's decomposition we get 
j -  1  

(5 I1 I~ov(&,n(s~-I), x k X i - l ) l  llhf$llrn 8i-~m 
1=1 

Then, using the relations (483-(51) and x:=:=, Z~I: < zfi: Pi, we obtain 
k k 

(52) I E ( x k  hk,n (3,)) - E(&,n (Sj- 1)) (Xk X i -  111 C IlhGll m P 
i =  1  p = l  

It remains to bound 

This can be written as 

Using Taylor's decomposition and the condition k - j  + 1 < 2 (k - i + I), we get 

Then, summing the inequalities (45), (47), (52) and (53), we obtain 

Hence using the inequalities (44) and (54), we have 

It remains to bound supko- 1  <k<rn/3]  [IhfiII,. 
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we can prove using (33) that 

where C is independent of y (see also Rio [16]). Hence 

Let us denote by a, the right-hand side of (56). an does not depend on y and it 
tends to 0 as soon as a > 3/2. Hence, by (41), this completes the proof of 
Theorem 2. RI 

We are now in a position to prove the fi-di convergence. We prove Lem- 
ma 2 for one-dimensional rnarginals. If one wants to prove it for any finite- 
-dimensional marginals, it is sufficient to use the following proof with 
Z, ( t i ,  . . ., t,) = x;=, q (lxks,  - F (t,)), where ( t ,  , . . ., tr) E R' and for arbitrary 
numbers a,, . . . , a,. To prove the convergence of (2, (t)), : = (I ,,,, - F (t)),, 
for some t. ER, we apply Theorem 2 to the sequence (2, (t)),,. First we need the 
following proposition: 

f ROPOSITION 1. Let (X,),, be a stationary sequence with common distribu- 
tion function F supposed to be Lipschitz. Assume that (X,),, satisfies the (SWD) 
weak dependence condition with a sequence Then the sequence 
(Zn(t))nEN := ( I X n G t -  F(t))nEN, which is unijorrnly bounded, satisfies the (SWD) 
weak dependence condition with a sequence such that there exists some 
positive constant D such that 0: < D A. 

Proof of Proposi t ion  1. In the following, C will denote some arbitra- 
ry constant which may vary from line to line but which is independent of u, v, r. 
Let ~ E R .  We want to prove that (Z,(t)),, satisfies an (SWD) dependence 
condition. For this we have to bound 

for all ii < ... < i, < i,+r < j ,  < ... < j, and for all h€Lm, ~ E P .  We write 
Zi for Zi(t). Let us write Z,  = cp (X,). We want to smooth the function cp which 
is not Lipschitz. Let E > 0. We consider the following Lipschitz function cp" 
smoothing cp: 

6 - PAMS 222 
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We have I I Y ' I I ,  < Ilqll m G 1 and Lip (ya)  G 3/(4~). Hence, arguing as for Lem- 
ma 3, we have 

Then if we take e = A, we obtain ICh,u,vI 6 C Ilhll.. Lip (k) v ,,&. Consequent- 
ly, (Y,),,, is (SWD) with 15& < C f i r .  This completes the proof of Proposi- 
tion 1. 

Now, let Sk (t) = Zi (t) for 1 < i < n, So (f) = 0. Let us prove that 

Let vk (t) = Var (Sk (t))-Var (s,~, (t)). As soon as 0, = O ((r + 8 > 0, we 
have 

+ m  

vk ( t )  c2 (t) = C COV (ZO (t), Zlll (t)) < co as k + rn . 
i =  - 00 

Cisaro's theorem yields then 

var (s,, (t)) C = 01 (0 - - + o2 (t) as n + co 
n n 

If c2 (t) = 0, the convergence of Sn(t)/n is a simple fact. If (r2 (t) > 0, by 
Proposition 1 we are in a position to apply Theorem 2 to (~~(t)),,, to obtain 
the fi-di convergence as soon as 8, = 0 ((r + 1)-0) with a > 3. This completes the 
proof of Lemma 2. 

P r o  of of Lemma 5. By induction on p 8 2 and using decomposition 
(19), we get for any f E g,- , 

where 
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Let now f be a fixed function of the set Pp(bp, b,,,). In view of (57), 
Lemma 5 is proved if we suitably evaluate Rp,k (f). Clearly, 

Taylor's formula and the (SWD) property yield 

Finally, 

The proof of Lemma 5 is complete by noting that, as (X,),, is bounded by 1, 

P r o  of of Lemma 7. For all positive integers rn and all positive real 
numbers a and f l  that are conjugate (i.e., l/a+ l/P = I), by the Holder in- 
equality we obtain 

Thus M , ,  < s;la (MP,,)'lP. Hence, for a = (p - 2)/@ - m) and B = ( p  - 2)/(m - 2) 
the inequality M,,, < s,2(p-")I(" ') Mtm- P W ~  ')/(p- ') holds. 

As we also have MP-,,, G S , ~ " ~ ~ - ' ) M ( ~ - ~ - ' ) ~ ~ - ~ ) ,  p,n we get the first inequal- 
ity in (12). Then, bounding Adp,, and sf: by the sum M,, + s:, we get the second 
inequality of (12). 

Now, we prove only (13) ((14) will hold by the same method). Clearly, 
n - 1  

(59) s,P-" (b, A b, s,) (n C (i + di) < $-"(bl A b2 sn)s;-' (n C Oi) 
(i+l)<(s,nn) i=O 

Collecting the inequalities (59) and (60) we obtain (13). B 



Proof of Lemma 9. We write 

f '(Sk-ip-i-l + ~ X k - i ~ ~ )  

= [f'(sk-ip-i-l+uXk-ip-l)-f'(Sk-ip-l-l)] ff'(Sk-ip-l-l), 

so the covariance quantity of Lemma 9 is decomposed into two terms: 

(61) ICOv(Xk.--xk-i,, Xk-i,+i .-*Xk-iP-lfr(Sk-ip-1-l))13 

(62) l ~ o v ( ~ k . . . ~ k - i ~ ,  Xk-lm+i ...X k-iP-1 [f '(Sk-ip-1-1 + ~ X h - i ~ - ~ )  

-f ' ( ~ ~ - i p - l - l ~ l ) ~ -  

Step 1. Study of the terms of type (61). 
We use the following decomposition: 

l ~ ~ v ( ~ k - - . ~ k - i , ,  Xt-i,+l.-mXk-i,-lfr(S~-ip-i-l~)l 

a ]COv(xk.--xk-i,, x k - i , + ,  - . - ~ k - i ~ - ~  Cf'(Sk-ip-L-l)-f'(~k-b-l-rm-l)])l 

+(cov(x~, . x k - i r n 7  X R - & + ~  .. -Xk-iP-l f '(Sk-i,-I-r,-l))l* 

(a) The (SWD) property yields 

lJ(k, rml i 1 3  ip-lll 

:= I C O V ( X ~ - - . X ~ - ~ ~ ~  x k - i r n + l .  --xk-ip-l [ f  '(sk-ip-~-l)-f '(~k-ip-~-r, , ,-l)~)] 

. . < Cp (bl A b2 r,) O,,,, , where rm = im+ - r ,  = max (iq- iq- 
1 4 q 4 p - 2  

Thus 

Summing up over m E (0, . . ., p- 2) and k E (0, . . ., n) in the last inequality 
yields 

where (i) denotes 0 =: io < i l  < ... < ip-l < k-1 
(b) We now use the fact 

Cov (X, YZ) 
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to get 

Using Lemmas 6 and 7 and arguing as for the inequality (22) we obtain 

Let us now study I, (i,, . .., iP-,). 
On the one hand we have, using the (SWD) property: 

On the other hand, using Taylor's decomposition, we get 

Moreover, we write 

The inequalities (65) and (66) yield 
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If now we note that 

using once more the inequality (66) we also get 

Consequently, 

To bound 1, (i, , . . ., i,- ,), we use the (SWD) property, as for the bound of 
I1(il,  ..., i,-,), and Lemmas 6 and 7. We obtain 

~ I ~ ( i ~ , . . . , i ~ - l )  
k = l  ( i )  

which provides a bound for the sum of the terms of type (61). 
S tep  2. Study of the terms of type (62). 
Using Taylor's decomposition we get 

Consequently, if (k) denotes 1 < k < n and if (i) denotes i1 < . . . < ip-, < k- 1, 
we have 

The inequalities (63), (64), (67) and (68) yield the proof of Lemma 9. E 
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